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A quantum mechanical definition of molecular size and shape is formulated from the electronic second moment
of the Hartree-Fock wave function. The shape tensor is defined to be invariant with respect to the origin.
The geometric average of the eigenvalues of the tensor correlates very well with van der Waals and Bragg-
Slater radii. There is also a close linear relationship between this definition of molecular size and molecular
volumes determined computationally using isodensity contours. Furthermore, this definition of molecular
size is effective in predicting the steric effects of substituents, as predicted by existing methods, such as the
modified TaftES

e, P-values, andn-values.

1. Introduction

The shape and size of a molecule or substituent can be very
influential on its physical and chemical properties. A predomi-
nant topic concerning substituent shape and size is steric
hindrance. There are various methods that quantify steric effects;
however, the result often varies with the method. While
geometry provides important insight into how a substituent may
interact sterically, it does not provide a quantitative measure of
steric interaction. Therefore, most methods quantify the steric
effects of substituents in terms of energy. The first steric
constant,ES, was defined by Taft1 from a modified version of
the Hammett equation.2

Taft’s ES values are determined from the reaction rates,kX, of
acid hydrolysis of substituted aliphatic esters,XCOOR, and the
reaction rate,k0, of acid hydrolysis of the ester CH3COOR
averaged over four different reaction conditions.3 However, soon
after the introduction ofES, it was noticed that electronic effects,
such as polar and resonance effects, were included in the steric
constant. Various modifications have been made to Taft’sES

in an effort to eliminate electronic effects and determine steric
constants, which are more generally applicable.3 Dubois defined
the Taft-Dubois steric parameterE′S in the same manner as
ES; however, the rates were measured using only one standard
reaction, the acid-catalyzed esterfication of carboxylic acids at
40 °C in methanol.4 Hancock et al. modified the definition of
ES to account for the effect of hyperconjugation,3

whereN is the number ofR-hydrogens. Another modification
of ES was presented by Unger and Hansch. They defineES

e(X)
) ES(CH2X), which corrects for electronic contributions.3 While
these steric parameters are widely used, they are defined from
a single type of reaction and hence are only moderately
successful at predicting steric effects in general.

An alternative method to determining the steric effect of a
substituent is through the energetics of conformational processes.
The advantage of such an approach is that it avoids many other
effects of a substituent that may be encountered in a chemical
reaction, which are impossible to exclude. The simplest example
is Anderson’sP-values, which involve rotation around the C-C
bond in ethanes.5 However, bond length and geometry can have
a large influence on the lateral interaction between the sub-
stituent of interest and the substituents on the neighboring carbon
atom, which leads to unreliable steric information. Similar
disadvantages are shared withA-values.6 The A-value for a
substituentX is defined as

whereK is the equilibrium constant for the equatorial and axial
isomers of the monosubstituted cyclohexane. LikeP-values,
factors such as the bond length and the shape of the substituent
lead toA-values that do not always correlate well with the spatial
requirement of the substituent. A solution to such a problem
may be the design of a conformational process, which involves
a more multidimensional interaction with the substituent, such
as the topomerization process shown in Figure 1.7 The ring
inversion of this system is used to determine the steric parameter,
n-value7 of X. The n-value is defined as the value ofn such
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that ∆Gc
q ) 15 kcal mol-1. While the idea behind then-value

as a measure of the size of a substituent is promising, the
application does have flaws. The determination of then-values
involves interpolation or extrapolation tof(n) ) ∆Gc

q ) 15
kcalmol-1, approximatingf(n) as linear. Yet, despite the flaws
and small number of data points, relatively good results can be
obtained.7 While there are various methods to quantify the
spatial requirement of a substituent, steric hindrance does not
necessarily correlate perfectly with the shape and size or volume
of a substituent.

Perhaps the oldest and most popular method to determine
the volume of a molecule is through the atoms in molecules
approach. By using the average radii of atoms in different
environments,8,9 determined by kinetic gas theory or X-ray
crystallography, the shape and volume of molecules can be
approximated.8 Since the idea was introduced in the 1960s, there
have been several algorithms developed for the calculation of
the molecular volumes of many different types of compounds.
One of the more recent algorithms, by Gavezzotti,10 is capable
of dealing with complicated structures such as cage compounds
and inclusion compounds in crystalline matrices. These empiri-
cal calculations are widely used; however, the use of quantum
mechanics to calculate molecular volumes is an alternative. In
1967, Bader et al. determined the size and shape of first row
homonuclear diatomic molecules from outer contours of the
Hartree-Fock electron density distribution.11 Once the theory
of atoms in molecules had advanced, such as the aforementioned
volume algorithms, along with computational methods, deter-
mining molecular shapes and sizes was once again investigated
by Bader et al.12 The molecular shapes and volumes agreed well
with the corresponding van der Waals volumes using density
contours of 0.001 and 0.002 a.u. It was also found that the
properties of various atoms and functional groups were trans-
ferrable from molecule to molecule, especially in the case of
normal hydrocarbons.12

Another method of calculating size using quantum mechanics
was introduced by Csizmadia et al.13 when studying localized
molecular orbitals (LMOs). A theoretical definition of the size
of an electron pair,〈r1

2〉Ra, is given as

whereRa is the centroid of charge of the LMO,

calculated at some pointR0. While this definition cannot describe
entire substituents, it can be successfully applied to bonds and
lone pairs.13 Later, Csizmadia focused on the components of
〈r2〉, 〈x2〉, 〈y2〉, and〈z2〉, to define the shape of an electron pair.14

The second moment tensor of an LMO, with respect to its own
centroid of charge, was defined as

It is suggested that if the tensor is diagonalized,

the diagonal values,〈x′2〉, 〈y′2〉, and 〈z′2〉 are aligned with the
axes of an ellipsoid, which describes the shape of the LMO. A
similar calculation could be applied to an entire molecule.
Analagous to the definition of the second moment tensor of an
electron pair, the second moment tensor of a molecule can be
defined so that when diagonalized the diagonal values are the
major and minor axes of an ellipsoid in which the molecule is
inscribed. The process can then be taken a step further, by
calculating the average radius of the ellipsoid and its volume.
Such an approximation to molecular volume is calculated from
expectation values of the Hartree-Fock wave function and is
much less time-consuming than tracing a three-dimensional
contour around a molecule. The radii and volumes determined
for different substituents can then be used to predict steric
effects.

2. Theory

2.1. Origin Invariant Electronic Second Moment Tensor
of a Molecule. The second moment tensor of a molecule,
calculated at some pointr0 ) (x0, y0, z0), is given as

Expectation values of the form〈ij 〉, i ) x, y, or z and j ) x, y,
or z, are defined as follows

whereΨ is the Hartree-Fock wave function. It is seen that the
second moment tensor depends on the origin; hence, a standard
origin should be chosen, such as the center of nuclear charge.
However, the second moment tensor can become origin invariant
if it is defined in the following manner

where

N is the number of electrons andra is an arbitrary origin. The

Figure 1. Topomerization of phane system with intra-annular sub-
stituent,X, used to determinen-values.7

〈r1
2〉Ra

) |〈ψa|r1
2|ψa〉0 - Ra

2| (4)

|Ra| ) x〈ψa|x1|ψa〉0
2 + 〈ψa|y1|ψa〉0

2 + 〈ψa|z1|ψa〉0
2 (5)

Ω ) ([〈x2〉0 - 〈x〉0
2] [〈xy〉0 - 〈x〉0〈y〉0] [ 〈xz〉0 - 〈x〉0〈z〉0]

[〈y2〉0 - 〈y〉0
2] [〈yz〉0 - 〈y〉0〈z〉0]
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2]

)
(6)

U+ΩU ) (〈x′2〉 0 0

〈y′2〉 0

〈z′2〉 ) (7)

S) (〈x2〉r0
〈xy〉r0

〈xz〉r0

〈y2〉r0
〈yz〉r0

〈z2〉r0

) (8)

〈ij 〉 ) ∫Ψ*( r) ij Ψ(r) dr (9)

S̃) (〈x̃2〉 〈x̃y〉 〈x̃z〉
〈ỹ2〉 〈ỹz〉

〈z̃2〉 ) (10)

〈ı̃j〉 ) 〈ij 〉ra
-

〈i〉ra
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N
i ) x, y, or z andj ) x, y or z

(11)
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tensor S̃ is a real symmetric matrix and therefore can be
diagonalized yielding a principle coordinate system.

The eigenvalues,〈x̃′2〉, 〈ỹ′2〉, and〈z̃′2〉, correspond to the principal
axes of the electronic second moment of the molecule,Q, and
can be associated with the major and minor axes of an ellipsoid.
The geometric average,R̃, of these axes is given by

and the volume of the ellipsoid,Ṽ, is

3. Method

Calculation of the origin invariant second moment tensor and
diagonalization were performed using the MUNgauss program.15

All calculations, with the exception of HI, were performed at
HF/6-31G(d)//HF/6-31G(d). The double-ú Huzinaga basis set

for iodine16 was used for calculations on HI. Geometries were
optimized using Gaussian03.17

4. Results and Discussion

4.1. Molecular Shape and Volume.The eigenvalues of the
second moment tensor,S̃, the average radius,R̃, and the
molecular volume,Ṽ, for each molecule studied are given in
Table 1.

In an effort to investigate the validity of this method, the
radii of the hydrides were compared to the corresponding van
der Waals8 and Bragg-Slater9 atomic radii (Figure 2). The
average radii of the hydrides correlate very well with both the
van der Waals (R2 ) 0.916) and the Bragg-Slater (R2 ) 0.910)
atomic radii. Most of the observed scatter is due to the number
of hydrogens bonded to each atom. Negative deviations are seen
with HF, HCl, and HBr, whereas NH3, CH4, and PH3 deviate
positively. An exception to this trend is the van der Waals radius
of Si, which is underestimated byR̃ of SiH4. Although, when
comparingR̃ to the Bragg-Slater radius, the expected positive
deviation is seen. While the radii predicted from the electronic
second moment have been compared to experimentally deter-
mined values, the molecular volumes will be compared to an
alternative computational method.

The molecular volume approximated by the second moment
ellipsoid,Ṽ, and the molecular volumes enclosed by isodensity

Q+S̃Q ) S̃′ (12)

S̃′) (〈x̃′2〉 0 0

〈ỹ′2〉 0

〈z̃′2〉 ) (13)

TABLE 1: Molecular Shape and Volume from Origin Invariant Electronic Second Moment [HF/6-31G(d)//HF/6-31G(d)]

molecule
〈x̃′2〉
(a.u.)

〈ỹ′2〉
(a.u.)

〈z̃′2〉
(a.u.)

R̃a

(a.u.)
Ṽb

(cm3 mol-1)
VF)0.001a.u.

c

(cm3 mol-1)
VF)0.002a.u.

d

(cm3 mol-1)

H2 1.507 1.507 2.151 1.303 0.83 10.75 7.78
HF 4.011 4.011 5.101 2.085 3.39 10.90 8.91
HCl 10.434 10.434 13.417 3.357 14.14 24.16 18.97
HBr 15.008 15.008 18.504 4.012 24.13
HI 22.933 22.933 28.108 4.954 45.45
H2O 6.265 5.357 7.113 2.491 5.78 15.63 12.54
NH3 9.156 7.571 9.156 2.931 9.42 20.20 15.88
CH4 11.817 11.817 11.817 3.438 15.19 25.53 19.58
BH3 14.520 5.173 14.520 3.208 12.34
N2 7.570 7.570 23.211 3.316 13.63 20.61 16.68
F2 6.862 6.862 35.461 3.444 15.28 17.18 14.04
CO 7.351 7.351 24.169 3.306 13.51 21.10 16.62
CO2 10.748 10.748 89.487 4.667 38.01 25.88 21.20
SO2 17.474 14.722 135.731 5.717 69.85 33.10 27.20
HCN 8.600 8.600 31.016 3.632 17.90 25.18 20.07
HCP 14.665 14.665 62.507 4.876 43.34 36.66 29.78
H2S 15.447 12.470 15.883 3.810 20.68
PH3 18.651 17.782 18.651 4.285 29.40 33.95 26.43
SiH4 22.779 22.779 22.779 4.773 40.64
HNO2 21.222 11.504 80.515 5.195 52.41
CHF3 89.557 24.394 89.557 7.619 165.34
CHOOH 25.834 12.333 93.234 5.565 64.43
CH3OH 16.714 15.712 50.256 4.861 42.94
CH2O 14.636 8.512 35.846 4.058 24.98
CH3SH 25.738 22.546 96.426 6.185 88.43
trans-CHOOCH3 38.764 22.553 226.840 7.636 166.47
cis-CHOOCH3 65.532 22.442 162.418 7.877 182.69
ethane 22.062 22.062 65.160 5.626 66.57 39.54 31.10
ethane 21.047 11.432 48.943 4.770 40.56 25.46 20.45
ethyne 9.901 9.901 39.408 3.961 23.23 36.37 28.70
propane 50.001 32.376 144.150 7.846 180.57 53.64 42.76
cyclopropane 61.816 31.134 61.816 7.013 128.94 45.85 36.69
butane 63.342 42.694 318.801 9.756 347.09 67.64 54.34e

isobutene 152.575 48.722 152.579 10.212 398.11 67.21 54.53
pentane 85.211 53.002 579.953 11.741 604.98 81.56 65.96
neopentane 161.286 160.288 168.659 12.782 780.56 80.78 65.95
hexane 99.825 63.310 974.114 13.538 927.49 95.71 77.62e

cyclohexane (chair) 258.689 74.030 258.691 13.057 832.02 84.70 69.35
cyclohexane (twisted-boat) 245.442 82.461 258.837 13.179 855.58 84.70 69.35

a Defined by eq 14.b Defined by eq 15.c ,dRef 12 (Table I).e Values calculated using Table III in ref 12; values in Table I have an error.

R̃ ) (〈x̃′2〉 〈ỹ′2〉 〈z̃′2〉)1/6 (14)

Ṽ ) 4π
3

R̃3 ) 4π
3

x〈x̃′2〉 〈ỹ′2〉 〈z̃′2〉 (15)
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contours (F ) 0.001 andF ) 0.002 a.u.)12, VF, were compared,
and there is certainly a relationship between the two measures
of molecular volume. However, for small molecules (VF < 35
cm3 mol-1, F ) 0.002 a.u.),Ṽ underestimatesVF, and as
molecules become larger,R̃ increasingly overestimatesVF. The
growth of Ṽ relative toVF is mainly due to the nature of the
second moment operator,r̂2. As the dimensions of a molecule
increase, second moment expectation values increase in a
quadratic fashion. Despite the differences in the behavior of
the two measures of molecular volume, good agreement was
found through the equation

The values ofa andb, when an isodensity contour of 0.001
a.u. is used to determineVF, area ) 9.4 ( 0.7 cm3 mol-1 and
b ) 0.331( 0.012 withR2 ) 0.977. ForF ) 0.002 a.u., the
values area ) 7.3 ( 0.5 cm3 mol-1 andb ) 0.338( 0.011
with R2 ) 0.982. The values ofb, b ≈ 1/3 suggest that a
simpler relationship exists betweenVF andR̃, which is the case
(Figure 3).

The Bader volume of a molecule,VF, is proportional to the
average radius of the origin invariant electronic second moment.

Slightly better agreement is seen withVF)0.002a.u., whereR )
5.45 ( 0.15 cm3 mol-1 bohr-1 and R2 ) 0.982. WhenR̃ is
related toVF)0.001a.u., R ) 6.6 ( 0.2 cm3 mol-1 bohr-1 andR2

) 0.977. The largest deviation from this relationship (eq 17),
for F ) 0.002 a.u. andF ) 0.001 a.u., is the Bader volume of
ethyne. Using isodensity contours, the following relationship
is observed,VF (CH2CH2) < VF (CHCH) < VF (CH3CH3).
However, the electronic second moment predictsṼ (CHCH) <
Ṽ (CH2CH2) < Ṽ (CH3CH3). Hence, it appears that the two
methods apply different weights to diffuseπ-bond density and
the density surrounding terminal hydrogens. Yet, while the two
methods differ greatly in complexity of calculation, they
correlate quite well via eq 17.

4.2. Steric Effects. It is evident that the origin invariant
electronic second moment tensor,S̃, is a valid property for
determining the size of a molecule. The question is now asked,
can S̃ be used to predict the steric effects of substituents? For
a substituentX, the electronic second moment of the corre-
sponding HX molecule is used. The relationship betweenR̃and
the Unger and Hansch-modified Taft steric constant,3 ES

e, is
presented in Figure 4. There is a relationship between the
modified Taft constant,ES

e, andR̃, but there are some signifi-
cant deviations. For halogens and first row hydrides, the linear
relationship is followed quite closely. However, when a sub-
stituent is of the formX ) Y-Z, such asX ) CtN, O-CH3,
O-N-O, and S-CH3, R̃ overestimatesES

e. The one significant
positive deviation involves ethene, whereR̃ predicts a much
smaller steric effect. When steric factors are measured via a
chemical reaction, there are several variables involved, including
the conformation of the substituent during the rate-determining
step. It is noticed that theES

e values forX ) OCH3 and OH are
both -0.55, and the values forX ) SCH3 and SH are both
-1.07. In those cases, it is evident that the reaction is affected
by the O and the S and not the entire substituent as measured
by R̃. In the case of ethene, the conformation of the vinyl
substituent may directly interfere with the rate-determining step
resulting in a very largeES

e value. It appears that whileR̃
correlates moderately well withES

e, it is necessary to consider
the type of substituent and how it may effect the hydrolysis
reaction.

In the case of halogens, there areP-values available for
comparison.7 A plot of R̃ against theP-values of the halogens

Figure 2. Comparison of average radii of hydrides to van der Waals
and Bragg-Slater radii.

Figure 3. Comparison of electronic second moment average radius,
R̃, to Bader isodensity contour molecular volume,12 VF (F ) 0.002 a.u.).

VF ) a( Ṽ

1 cm3 mol-1)b
(16)

Figure 4. Relationship between the electronic second moment average
radius,R̃, and the modified Taft steric constant,ES

e.3

VF ) R R̃ (17)
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and hydrogen is given in Figure 5. As expected,R̃ predicts the
same trend among these substituents. However, the relationship
is not quite linear and is difficult to determine with few data
points. There is more data available for the more extensive
measure of the spatial requirement of substituents,n-values.

The n-values for various substituents,X, were also plotted
against the average radiusR̃ of molecules HX (Figure 6). The
n-values for the substituents studied correlate quite well with
R̃, R2 ) 0.849. The only significant deviation involves NO2,
where R̃ predicts a largern-value than what is observed
experimentally. For all other substituents,R̃ predicts the same
order of spatial requirement. During a conformational process
as the one described in Figure 1, other effects, such as electronic
effects, are minimized but are still present and these effects vary
among substituents. While the determination ofn-values is quite
successful with few data points and linear interpolation of∆Gc

q

) 15 kcal mol-1, it is possible that NO2 interacts favorably
with the aliphatic chain, resulting in a relatively lowern-value.
The tensorS̃, and the valueR̃provide purely steric information;
therefore, when compared with experimental measures, devia-
tions will be observed when other effects become significant.

5. Conclusions

The origin invariant electronic second moment tensor,S̃, is
a valid measure of molecular size and consequently the spatial
requirement of a substituent. There are several pre-existing
methods for determining such values, both experimentally and
computationally. The shape and size of a molecule as defined
here correlate well with many of these pre-existing methods
and are relatively easy to compute. The tensor consists of one
electron expectation values, which require far less complex and
extensive calculation than existing quantum mechanical ap-
proaches. In most cases, the square root of the geometric average
of the eigenvalues ofS̃, R̃, can predict the steric effects of
substituents as described by the modified TaftES

e, P-values,
and n-values. While there are some deviations, consideration
of the substituents being compared may lead to better estimates.
Also, the shape as described by the principal axes of the second
moment tensor,〈x̃′2〉, 〈ỹ′2〉, and〈z̃′2〉, could be applied specifically
when certain interactions are expected in a chemical reaction
or conformational process.
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